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In this paper we study a class of separable Banach spaces which can be ap- 
proximated by certain special finite-dimensional subspaces. This class is 
characterized in Theorem 1.1, from which it follows that the space of con- 
tinuous scalar-valued functions on a compact metric space always belongs to 
this class, and that every member of this class has a monotone basis. 

1. Introduction. In several recent papers [7, p. 25], [2], [5], [8], the concept 
of a hi-space has been found useful: A Banach space B is a 7rl-space if it contains 
a directed (by inclusion) family (E~)~ ~ A of finite dimensional subspaces, whose 
union is dense in B, such that each E~ is the range of a projection of norm one 
from B. It is rather easy to show that LP-spaces (1 < p < + oo) are hi-spaces. 
The problem becomes more difficult for the space C(S) of all continuous scalar 
(i.e. real or complex) valued functions on a compact Hausdorff space S, and there 
it is only solved (affirmatively), as far as we know, for metrizable S (cf. [9]). 

If C(S) is a ~ ~-space, then (of. the footnote on p. 197) each of the spaces E~ appear- 
ing in the definition of a hi-space is isometrically isomorphic to some 1~), where l~ 
denotes the space of n-tuples of scalars with norm II x II -- m a x ~ , ~ , l  x(i)l" This 
suggests the following concept. 

DEFINITION. A Banach space B is a n~°-space provided B has a directed (by 
inclusion) family of subspaces (E,)~ ~A, whose union is dense in B, such that each 
E, is isometrically isomorphic to some I~). 

It is well known that there always exists a projection from a Banach space 
onto any subspace which is isometrically isomorphic to some I f  (see Lemma 
2.1 for a proof). Hence every z~°-space is a lh-space. However, there are rh- 
spaces which are not n~°-spaces, such as any Hilbert space (of dimension > 1). 
In fact, every infinite-dimensional n~-space is non-reflexive [7; p. 66 Corollary 
1, and Theorem 6.1 (2)]. 

Our principal result asserts that, for separable Banach spaces, the property 
of being a n~°-space is equivalent to a property (a ®) which is formally weaker 
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and much easier to verify. (If z • B and E c B, then d(z, E) will denote 

infe ~E [I z - eli ). 
(a ~°) I f Z  is a finite subset of  B and ~/> 0, then there is an integer n and a linear 

map T:I~ - }B  such that d(z, Tl~) < t / for  z • Z ,  and 

(1 + II x II --< II Tx II (1 + t/)II x II 
for x • l ~ .  

THEOREM 1.1. Let B be a separable Banach space. Then the following con- 
ditions are equivalent. 

(i) B has property (a~°). 
(ii) B is a It~-space. 
(iii) B has an increasing sequence of subspaces El c E 2 ~ ..., whose union 

is dense in B, such that each E n is isometrically isomorphic to l~. 
This result easily implies (cf. section 6). 

COROLLARY 1.2. Every separable 7c~-space has a monotone basis. 

Corollary 1.2 improves a result of  GurariI [6, Theorem 81, who proved that 
a separable Banach space with property (a °°) has a basis(*). 

Using the standard technique of "peaked partitions of unity" (see Section 5), 
one can easily verify that C(S) has property (a ~o) for arbitrary compact S (cf. 
[7, pp. 28-29], [91, [11]). Therefore Theorem 1.1 gives an alternative proof 
of the result [91 that, if S is compact metric, then C(S) is a 7t~°-space. Combining 
this result with Corollary 1.2 we get the following corollary, which was asserted 
by Gurarff in [6; footnote on p. 2981, and which strengthens some results of 
Vaher [121 and Bessaga [1]. 

COROLLARY 1.3. I f  S is compact metric, then C(S) has a monotone basis. 

In conclusion, let us list, without proof, some further examples of lt~-spaces: 
The space Co(S)= ( f •  C(S): f ( x o ) =  0}, with S compact metric and Xo• S. 
The spaces C~(K), with K compact metric, of Day [3, p. 891. 
The weak tensor product (cf. [3, p. 651]) of  any two ~t~°-spaces. 

2. Preliminaries. We commit the notational abuse of writing i • n instead 
of i = 1, 2,... ,  n. If  x = (x(i))~ ~n • l~, then 

N(x)={i•n:lx(i)l = II ll }" 

By u~ ") we denote the k-th unit vector of I~, i.e. u~*)(i) = 6~ (i • n, k • n). 
In the sequel we shall need the following three lemmas. Lemma 2.2 follows 

from [4, p. 74, problem 34]. Lemmas 2.1 and 2.3 are probably also known, but 
we include their proofs for completeness. 

(*) Actually, Guraril"assumed that B has a property ("Bis a space of class (~")which is 
formally stronger than (a~). In fact, his property is equivalent to (a~)(cf. [7, p. 221). 
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LEMMA 2.1. Let R be a linear map from l~ into a Banach space B, and let 
R have a bounded inverse R -1. Then there exists a projection P from B onto Rl~  
with It P t} < II R II II R-1II • In particular, if  R is an isometry, then IIP [I = 1. 

Proof. By the Hahn-Banach theorem, there exist linear functionals ~b t on 
B ( i =  1, ..., n) such that q~,(y)=(R-ly)( i)  for all y ~ g l ~ ,  and l] ~bill < IIR -1 ]1. 
Now let Px = ~,~ ~,~bi(x)Ru~ ~) for all x e B. Then P is the required projection. 

Let T: Im ~ ~ l~ be a linear map, and let e.i = TuJm)forj ~ m. 

LEMMA 2.2. ]l T II = max, ~, I ~.i~me.i (i) 1" 

LEMMA 2.3. T is an isometric embedding if and only if 
(a) E.i~,~le.i(i)l < l for i e m ,  
(b) II e.i [I = 1 for j ~ m, 
(c) if  i ~ N(ej) and s # j,  then e~(i) = 0 (s e m, j e m). 

Proof. Necessity: The necessity of (a) (by Lemma 2.2) and (b) is trivial. If T 
is an isometry, i e N(e.i) and s # j,  then, choosing 2 such that [ 2 ] = 1 and 

le.i(i) + 2es(i)I = [ej(i)[ + I ;tes(i)[ = 1 + I e~(i)[, 

we get 1 = I1 e.i + 2es [I > 1 + lea(i)I" Hence e~(i) = 0. 
Sufficiency: Choose i v ~ N(e~) for v e m. Let x = ~tju~ m) E l~. By (a) and Lemma 

2,2, II Tx II Z I1 x I1 On the other hand, 

H Txll --max[ ~ t.iej(i)l ~_max I Y~ tje.i(iv)l =maxl tv l  = [Ix[I, 
i c n  j ~ m  v e m  j e m  v e r a  

because, by Cb)and ¢c), I~.i..t~e.i¢iv)l-lt.I for ~ m  Thus IITxll=llxll 
for x e Im ~. 

3. Isometric and almost isometric subspaces of l ~ .  

LEMMA 3.1. Let 0 < rl < 1. Then, for each linear map T: l ~  l~ such that 

(~ ' )  II x !1 --< II T ~ II --< ( I + n)II x II for x ~ I : ,  

there exists a linear isometric embedding S: l~ --* l~ such that II s -  T II < ~ 

Proof. For each j e m, let f j  = Tu~ m) and 

N j =  {iEn:l f j ( i )  I ~ 1). 

By the left-hand side of  ( ~ ) ,  1 = u~ =) H <- [lfJ II" Therefore for each j ~ m there is 
an ij ~ n such that f.i(ij) = f.i ~ 1. Thus the sets Nj are non-empty. They 
are also mutually disjoint: Indeed, by the right-hand side o f (~- )and  by Lemma 2.2, 

J+,>__llrll~=~ If.i(i)l for i~n. 
JGm 
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Thus if s # j  (s ~ m, j  • m), and i • Nj  (or equivalently [fj(i) ] _-> 1), then 

[f.( i)  I =< t + ,1 -If/i)[ _~ ,1 < L 

Hence i ¢ N~. 

For all j e m and i • n, let 

I oS~(i) I (f/ i)l  -~ 
ej(i) = L fj(i) (1 + 17)- t 

if i eNj ,  
if i • N  s for s # j  
otherwise. 

(S E m), 

Clearly X~. le / i ) l  ~ ~ for i •n,  Ile, ll = 1 for j • m  
satisfy condition (c) of Lemma 2.3. 

Define the linear map S: l ~  ~ l~  by 

and the sets N(ej)= Nj 

Sx = • x(j)ej. 
j e m  

Clearly S is an isometric embedding. Since TuJ=)=fj and SuJ m)= ej, the in- 
equality II z - s II < ~ will fo l low f rom 

X [fj(i) - e~(i)[ < t/ for i • n. 
j e m  

We consider two cases. If  i ~ [.3 Ns, then 

E [f j ( i ) -e~(i) l= Z If~(i)l ,s 
jem jem - ~ - ~  <~vi" 

If  i e N, for some s • m, then 

Z [ f j ( i ) -e j ( i ) [= ~, i f~ ( i ) [+i f~ ( i ) [ - l<=[[T]I - l<t i .  
jem jerm 

j~s 

That completes the proof. 

LEgMA 3.2. I f  the subspace E of l~ is isometrically isomorphic to l~ (m < n), 
then there is a subspace F D E of l~  which is isometrically isomorphic to lm~°+ l. 

Proof. For j • m, let ej be the image of the j th unit vector under some fixed 
isometric isomorphism from l ~  onto E. Therefore the elements ej satisfy con- 
ditions (a), (b) and (c) of  Lemma 2.3. Since m < n, (c) implies that either one 
of the sets N(ej) (j  • m) contains at least two indices, or there is an index i ~ n 
which does not belong to any N(ej). In both cases it is easy to choose io • n such 
that the sets N(ej)~{io} are non-empty.Let F be the linear subspace of I~ spanned 
by elements f~ (j  •_m + 1), where 
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f1  = e j  - -  el(io)u}"o ) for j ~ m, 

fm+t = U~ )" 

Define T: l~ ~ l~ by T(x)= ~j .mx(j)fj. Then T satisfies conditions (a)-(c) 
of Lemma 2.3. (We have N(f j )= N(ej)~{io} for j ~  m, and N( f~+t )=  {io}.) 
Thus F is isometrically isomorphic to l~+ ,. Finally F DE because ej = f j +  ej(io)fm+ 
f o r j ~ m .  

Ra~t~K 3.3. In the language of affme geometry, Lemma 3.2 can be restated 
as follows: 

Let W be an n-dimensional parallelopiped in n-dimensional Euclidean space, 
and let the origin be the center of symmetry of W. Let Lm be an m-dimensional 
hyperplane passing through the origin and such that L,, n W is an m-dimensional 
parallelepiped. Then there is an (m + 1)-dimensional hyperplane L,+ 1 such that 
Lm÷ 1 D Lm and Lm+ 1 r~ W is a parallelepiped. 

Some interesting and far-reaching improvements of this result have recently 
been obtained by Perles. 

4. Proof of Theorem 1.1. 

LEMMA 4.1. Let B be a Banach space and let 0 < r/< 1/6. Then there is 
a ( T / ) = a > 0  such that, if Q:l~m-->B and R: I~- - ,B  are linear maps, and if 

<1 ÷ ~)- 111 x II ~ II Qx II ~ <1 ÷ ~)II x II 

< l ÷ ~ ) - ' l l y l l  = IIRyll ~< ( l ÷ ~ ) l l y l l  

dCQ~,RIT) < ~ 11 x 11 

for xel~., 

for y e l~, 

for O # x e l~, 

then there is an isometric embedding S:l~--,  l~ such that IIRS-Q I[ < 12t/. 

Proof. Choose a <  1/8r/. Let P:B-- ,RI~ be the projection defined in 1.3. 
Then II P[ < II R II R - '  _< <1 + ~)2 < 1 + 3~  Fix x ~ l~  and choose b in R l ~  

such that Q x  - b < a x . S i n c e  P b  = b ,  w e  g e t  

II e~ - e e ~  II =< II e~  - b II + II eb - e e x  II =< <1 ÷ II e II)~ II ~ II <- 4~ II ~ II 
Thus 

Ilee,, II >= 11 ex II-  4~11~11 => [(1 +,~) - '  - ~,7] I lxl l  >-- (1-  },l)llx II. 

Hence, using the inequalities 8a < ~/and 0 < ~/< 1/4, we get 

Let us set 

II R - ' e Q x  II ~ <1 + ~)- '  II e e x  II ~ <1 - 2.)II ~ I[ 
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T = (1 - 2.)-tR-1PQ. 

Then, since I1R-' II I1P 11 II e II < (J + a)3(1 + , )  < 1 + 2,.  

< 1 + 2 ,  
II ~ II --< II T~ II -- 1 - 2 .  I1 x II z (x + 6r/)11 ~ II 

Thus. by I.emma 3.1. there is an isometric embedding S:l~.-'. l~ 
II s - r II < 6,. Hence 

U Rs  - Q II ~- II R tl l! s - T It + It RT - ~ I1 

<(1  + , ) 6 ,  + IIPQ-QII + IIPQ II I1 - ( 1 -  2,)-11 

2, < 12.. < 7. + 4a + (1 + 3a)(1 + ")1 - 2. = 

That completes the proof. 

[September 

such that 

Proof of Theorem 1.1. 
(i) ~ (ii). First observe that, if B has property (a ~ ,  then, for any finite di- 

mensional subspace E of B a n d ,  > 0, there is a linear map T: l~ -+ B such that 

(1 ÷ .)-111 x II --< II Tx II < (1 ÷ ,)II x II for x ~ i :  and d(e. Tl~) < ,  II e II for 
0 # e • E. To see that. let Z be an ,/3-net for the unit sphere of E. and take T : l ~ B  
as in the definition of (a °°) w i th ,  replaced by ,/3. 

Let (b.) be a countable dense subset of B. By the preceding observation and 
• OO by Lemma 4.1. we can inductively define, for v = 1.2.-... linear maps T.. l~. ~ B 

and linear isometrics S~: l~ ~ l~+. such that 

and 

IIT,+ i s .  - T~ II < 12" 2 -3', 

max(ll T~ I1. U T.-'II) < 1 + 2-3". 

d(f, Tv+ll~,,)<2-3"IIfll for f~F,, 

where F, is the smallest linear subspace which contains T~l~ and the elements 

bl, b2, '",  b,. 
For k--1 ,2 , . . •  and v = k +  1,k + 2,..., let 

V..~= T." S.-1"  $.-2""S~.: I:--',B. 

Since all S, are isometric embeddings, 

II U . ÷ l . . - u . . ~  II _~ I I r . ÷ : .  - T.II <12" 2 - " .  

Therefore. for all k. the sequence (U..0.~.~+I satisfies the Cauchy condition in 
the operator norm. Let us set 



1966] BANACH SPACES WHICH ADMIT 1~ APPROXIMATIONS 195 

U~.k = lim, U,.~, E~ = U~o.d,~ (k = 1,2, ...). 

Since the S, are isometric embeddings and since lim, IIr, II--lira, l{ r~-'lI = 1. 
we have 

lim, It U,., II = lim, ll v ~ l l  = II v~.,ll = II U=.~ II = 1. 

Hence the U~,,k are isometric embeddings, and the E~ are isometrically isomorphic 
to l ~ ( k =  1,2,...). Clearly E/,=E'~+I, because 

oo oo U,.k+11,~+~ =U,,~l,k (k = 1,2,---; v = k + 1,k + 2, ..-). 

i I ~° E '  Finally we will show that k.;k = 1 k is dense in B. Take an arbitrary element b,, 
of  the sequence (b,)~= 1, fix k > m, choose x e l~ such that I] Ti, x - b.II-< 2- ~llb.ll, 
and put e = Uoo.k x. Clearly 

I1 T :  - uoo.:  II = lira, I1 T :  - u , , :  I1. 
Furthermore 

II T :  - ~,, : It 
v - k - 1  

=< I I r : - v , ÷ , . : [ l +  x II(v,÷,÷,.,-v~÷,.,),,ll 
j = l  

v - 1  00 

=< X 12.2-~'llxll -< x 12.2-3'11111. 
i = k  i = k  

By the definition of  x, 

Ilxll-< II z; l l l"  II z: l l  <= II z:l l l(  1 + 2-~)11 b- I1 • 
H e n c e  

l ib.-el l --< 

__< 

Since limkll rClll = 1, 
sequence (b,) is dense 
dense in B. 

[I r :  - b.  I1 + II r :  - v~o,,x II 
o0 

2-*'llb.II + 117:111<2-3'+ 1) ~: 12.3-' l lb. l l .  
i = k  

the last inequality implies limkd(bm, E~)= 0. Since the 
in B, this completes the proof  that the union I,.J~ 1E~ is 

(ii) ~ (iii). I f  B is a separable n~' space, then there is an increasing sequence 
(E~')n~ 1 of  subspaces of  B such that ~.Jn~ 1E" is dense in B, and E~ is isometrically 
isomorphic to l~  for some nk (k = 1,2,...). (Indeed, let E~ be as in the definition of  
a ~°-space, and let oo {b,}, = 1 be a dense subset of  B. By induction, choose E', = E,  
such that d(b~,, E'~) < n - I for m = 1, ..., n, and E" = E',_ 1.) Therefore, to complete 
the proof  of  the implication ( i i )~  (iii), it is enough "fill in the gaps",  i.e. to show 
that, if k = 1,2,.. .  and nk+ 1 - n ~ >  1, then there is a chain of  subspaces 
E~ = Fo ~ F t  c . . .  F,~.  1-,~ = E~÷ 1 such that F,  is isometrically isomorphic to 
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1~+, (v = 0, 1,2, ..., nk+X- nk). But the existence of such a chain of subspaces 
follows immediately from Lemma 3.2. 

(iii) ~ (i). This implication is trivial. 

5. A refinement of Theorem 1.1 for B = C(S). In the case of a C(S) space, S 
compact metric, one can prove a slightly stronger result than Theorem 1.1 (cf. 
Corollary 5.2 below). We recall that a finite-dimensional subspace E of C(S) is 
called a peaked partition subspace provided it is spanned by a peaked partition 
of unity, i.e. by non-negative functions fx , f2 , '" , f ,  such that Zfi = 1 and 
I] f~ll = 1 (i = 1,2, .-. n), where 1 denotes the function which is identically one on S. 

PROPOSITION 5.1. Let E be a linear subspace of C(S). Then the following 
conditions are equivalent. 

(o) E is a peaked partition subspace. 
(oo) E is isometrically isomorphic to l~ for some n, and 1 e E. 

Proof. (o)--*(oo). This implication is well known (cf. e.g. [9], [11]). 
(oo)-~ (o). Let f~'e E correspond under some isometric isomorphism to the 

k-th unit vector u~ n) of l~ for k e n .  Then clearly [[fkll = 1. Let us set 
: [/[(s~)] j'~, where sk e S is chosen in such a way that [f~(sk)[ = 1. Clearly k t - l v  

(cf. Lemma 2.3 (c))f~(sz)= 0 for l # k, l e n. Since l e E ,  there are scalars 
(t°)k , ,  such that 1 = ]~=lt~f~.Thus 1 = l(sz) = Y.~=lt°fk(s~)=t ° for len .  Thus 

oo S ~ s n t ' Zk=lfk() 1 for s eS .  Since [] Zk=lt~fk]l=]] Zk=lkf~]]=maxk~,]tk] for 
arbitrary scalars tl, t2, ..', t,, we get ~=l]fk(s)] < 1 for s e S. Thus all fk are 
non-negative. Hence {A,A,'",fn} is a peaked partition of unity. 

Combining Proposition 5.1 with the main result of [9] and Lemma 3.2 (cf. the 
proof of implication (ii)-, Off)) we get 

COROLLARY 5.2. Let E be an m-dimensional peaked partition subspace in C(S), 
S compact metric. Then there exists an increasing sequence of peaked partition 
subspaees E 1 ~ E2 ~ ... of C(S), whose union is dense in C(S), such that dimEn=n 
for all n and Em= E. 

6. Monotone bases in separable ~]o -spaces. We recall (cf. [3, p. 67]) that a 
sequence (e,),~ t is called a (monotone) basis for a Banach space B provided each 
b in B has a unique expansion b = ] ~ ,  t~ei (and ]] b ]} ~ [} Z=x t,e~ ][for n = 1,2,...). 
If (e,)~=x is a monotone basis for B, then the operator P~b = Y~--_ltiei, for 
b = Y-~= ltie~ e B, is a projection of norm one from B onto the subspace En spanned 
by et ,e2,- . ' ,er  Therefore the existence of a monotone basis in B implies the 
existence of projections P,: B ~ E~ such that 

(a) liP-I[-- 1, 
(fl) each range P,B = E, is an n-dimensional subspace of B, 
(~) E, cE,+x (n = 1,2,...), 
(6) E =U,~xE, is dense in B. 
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Conversely, the following observat ion is due to S. Mazur  (cf. Bessaga [2]).  

PROPOSmON 6.1.1/f  in Banach space B there exists a sequence of  projections 
p oo 

( . ) .= t  satisfying conditions (~)-(tS), then B has a monotone basis. 

Proof.  Define (e,)~=l inductively such that  Ile.ll = 1 and eneE, NkerP , - x  
for  n = 1, 2, . . . .  (For  convenience,  we set Po = 0.) Since the range o f  P~-x 
is (n - 1)-dimensional, the kernel  K e r P , - 1  has codimension = n - 1. Therefore  

e Qo the intersection E,  ~ Ker  P , _  i is non-empty .  To  prove that  ( ,)~ = 1 is a mono tone  
basis for  B, observe first that ,  since 11P, [[ = 1, e ,+ l  e Ker  Ps and e~ ~ E n for  
v = 1,2, . . . ,n .  

t.e.ll ~_ IP~C~at, e.) [[ = I1~ 1 t.e.[ 

n + m  n 
for  arbi t rary  scalars t l , t2,. . . , t ,+ 1. Thus by induct ion II ll >--II L ~ t , e ,  II 
for  arbi t rary  scalars t~, t2,-.-, t ,+~ (n, m = 1,2, . . . ) .  But the last inequality,  together  

e ® is a mono tone  basis for  B. (c. f. [10]) with (6), implies that  (~ ) ,  = i 

Proof of Corollary 1.2. This follows f rom Theorem 1.1, L e m m a  2.1 and 
Proposi t ion 6.1. 

I t  follows f rom a result o f  Lindenstrauss I'7] that ,  i f  B is a n~-space 
and if  E is the range o f  a project ion of  no rm one f rom B with dim E 
= n < + oo, then E is isometrically i somorphic  to l~(*). Hence we can complete  
Corol lary  1.2 as follows: 

COROLLARY 6.2. Let B together with a sequence of subspaces (E,) satisfy 
condition Oii) of Theorem 1.1. Then there exists in B a monotone basis (en)~=l 
such that (et, e2, ... , e,} spans E~ (n = 1, 2,...). Conversely, i f  (e~)~= t is a monotone 
basis for  a rc~-space B, then B and the subspaces E n spanned by {e l , ez , . . . , e ,  } 
satisfy condition (iii) of Theorem 1.1. 
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